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The main aim of the present work was development of a quantitative structure-property relationship
(QSPR) method using an artificial neural network (ANN) for the prediction of inherent viscosity (1 jnn) of
a data set of 75 optically active polymers containing natural amino acids. The total of 540 descriptors was
calculated for all molecules in the data set. In the next step an ANN was constructed and trained for the
prediction of 1 jun of polymers. The inputs of this neural network are theoretically derived descriptors

that were chosen by genetic algorithm (GA) and multiple linear regression (MLR) feature selection
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techniques. The values of standard errors for the neural network calculated 1 inn of training, test and
validation sets are 0.023, 0.030 and 0.031, respectively. Comparison between these values and other
statistical values reveal the superiority of the ANN model over the MLR one.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Synthesis of optically active polymers is an important field in
macromolecular science as they find a wide variety of potential
applications based on the chiral structure [1—-3]. One of the most
practical and widely accepted applications of chiral polymers is the
use as chiral stationary phase (CSP) for high-performance liquid
chromatography (HPLC) for the separation of racemic compounds
(resolution). Optically active polymers are newly considerable
topics which have been paid attention lately. Because polymers
with chiral structures are biologically very important, most of the
natural polymers are optically active and have special chemical
activities such as catalytic properties that exist in genes, proteins
and enzymes. Some other applications could be listed as: (1) con-
structing chiral media for asymmetric synthesis, (2) chiral
stationary phases for resolution of enantiomers in chromatographic
techniques, (3) chiral liquid crystal in ferro-electric and non-linear
optical devices [4—6].

Inherent viscosity of an optically active polymer is the ratio of
natural logarithm of the relative viscosity, n; to the mass concen-
tration of the polymer, C, i.e.:
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In view of fact that experimental determination of the inherent
viscosity of a large set of polymers is expensive, time-consuming
and required high-purity samples and skilled operators, so the
development of an alternative method such as quantitative
structure-property relationship (QSPR) would be useful for the
theoretical calculation of n jun values. QSPR is a mathematical
method that relates the properties of interested molecule to its
structural features. A current trend in quantitative structure-
property relationship studies is the use of theoretical molecular
descriptors, which can be calculated directly from molecular
structure. Obtained QSPR model, can be used to estimate the
properties of other polymers even when their structure is only
sketchy. Numerous researchers have attempted to predict some
physical properties values for polymers on the basis of quantita-
tive structure-property relationships (QSPRs). Yu et al. [7] devel-
oped a QSPR model for prediction of glass transition temperature
(Tg) of 107 polystyrenes using multiple linear stepwise regression
and four descriptors, RSC, SMC, DHB and MPE. Afantitis et al. [8]
predicted intrinsic viscosity in polymer—solvent combinations
using a novel QSPR model based on multiple linear regression
(MLR) technique. Liu et al. [9] constructed a model to correlate
molar volumes (V), refractive index (n), and glass transition
temperature (Tg) to the structural units of 35 polymethacrylates
by stepwise regression and artificial neural network (ANN)
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methods. Yu et al. [10] estimated the dielectric dissipation factor
(tand) of 92 polymers with an ANN model based on the DFT
calculation.

Recently artificial neural networks (ANNs) have been used for
a wide variety of chemical problems such as mass spectral search
[11], prediction of enthalpy of alkanes [12] classification of ion
mobility spectra [13], and prediction of dielectric constants [14].
ANNs were also used in quantitative structure property relation-
ship studies [15—19]. In this investigation, the calculated descrip-
tors from structures were used lonely to predict the inherent
viscosity of 75 optically active polymers using the ANN and QSPR
methods.

2. Methods
2.1. Dataset

The inherent viscosity (1 inn) of 75 optically active polymers
were taken from Refs. [20—29], which was used as data set. The
molecules in the data set are shown in Table 1. Data set was
randomly divided into three separate sections, the training, test,
and external validation sets, consisting of 51, 12, and 12 members,
respectively. The training set was used to adjust the parameters of
models; the test set was used for monitoring the extent of over-
training and external validation set was used for evaluation of the
prediction power of obtained model.

2.2. Molecular descriptors generation

Molecular descriptors are mathematical values that describe
the structure or shape of molecules, helping predict the activity
and properties of molecules in complex experiments [30]. It is
impossible to calculate descriptors directly for an entire molecule
because all polymers have wide distribution of molecular weight
and possess high molecular weight. It is understandable that, if
the molecular weight is high enough, the terminal groups hold
only a very small proportion in a polymer and its effect on the
properties can be ignored. Molecular descriptors calculated
directly from the structure of the repeating units (RU) can be used
for the study of QSPRs for polymers, since all the properties
depend on the chemical structure of the polymer molecules, and
all these structures were conditioned by the RU structure.
Therefore, we adopt this method and focus on the following
model to calculate molecular descriptors. The structures for
polymers were endcapped with last group of opposing side. In the
next step, the molecular structure of monomer compounds used
in the polymerization, were used to determine the molecular
descriptors of obtained polymers. After providing the data set, all
molecules (RU) were drawn into Hyperchem software [31] and
optimized using the PM3 semiempirical method. In a next step,
the Hyperchem output files were used by the dragon package to
calculate molecular descriptors. Dragon is new, freely available
software (by Milano Chemometrics and the QSAR Research
Group) for the calculation of more than 800 molecular descrip-
tors. Some of generated descriptors for each compound encoded
similar information about the molecule of interest, therefore it
was desirable to test each descriptor and eliminate those that
show high correlation (R > 0.9) with each other. A total of 124 out
of 540 descriptors showed high correlation and were removed
from the next consideration. Subsequently, the method of genetic
algorithm (GA) and stepwise multiple linear regression (MLR)
were used to select the most important descriptors and to
calculate coefficients relating the descriptors to inherent viscosity.
The descriptors that appear in the best MLR equation are shown
in Table 2.

Table 1
Data set and corresponding observed and predicted values of inherent viscosity of
polymers

Number Name of monomers of polymers ninh ninh ninh
(EXP) (MLR) (ANN)
Training set
1 ¢ asnd p-phenylenediamine 0.27 0.29 0.25
2 ¢ and 2,4-diaminotoluene 0.30 0.24 0.31
3 2 and m-phenylene diamine 0.62 0.59 0.62
4 2 and enzidine 0.55 0.63 0.58
5 ¢ and 4,4'-diaminodiphenylether 0.78 0.65 0.74
6 2 and 4,4'-diaminodiphenyl methane 0.49 0.45 0.47
7 b and bisphenol A 0.49 0.51 0.53
8 b and 4,4'-dihydroxydiphenyl 0.54 0.49 0.52
sulphide
9 b and bisphenyl-2,2'-diol 0.35 0.30 0.38
10 b and 4,4'-dihydroxydiphenyl 0.45 0.45 0.45
sulphone
11 ¢ and phenol phthalein 111 0.90 1.09
12 € and bisphenol-A 0.58 0.51 0.59
13 ¢ and 1,4-dihydroxyanthraquinone  0.42 0.41 0.41
14 € and 1,5-dihydroxy naphthalene 0.40 0.35 0.40
15 € and dihydroxy biphenyl 0.47 041 0.48
16 ¢ and 2,4-dihydroxyacetophenone  0.52 0.47 0.53
17 9 and benzidine 0.22 0.29 024
18 4 and 1,5-diaminoanthraquinone 0.09 0.07 0.10
19 d and 4,4'-sulfonyldianiline 0.09 0.08 0.11
20 4 and 3,3'-diaminobenzophenone 0.22 0.25 0.23
21 d and 2,6-diaminopyridine 0.12 0.13 0.11
22 € and 4,4'-diaminodiphenylmethane 0.28 0.25 0.26
23 ¢ and 1,4-phenylenediamine 0.32 0.27 0.31
24 € and 1,3-phenylenediamine 0.28 0.20 0.25
25 € and 4,4'-diaminobiphenyl 0.31 0.28 0.34
26 fand bisphenol-A 0.56 0.76 0.54
27 f and phenolphthalein 0.63 0.58 0.65
28 fand 4,6-dihydroxypyrimidine 0.49 0.54 0.48
29 fand 2,4-dihydroxyacetophenone 0.67 0.49 0.69
30 & and 4,4'-sulphonyldianiline 0.34 0.26 0.36
31 ¢ and 4,4'-diaminodiphenylether 0.26 0.30 0.29
32 & and p-phenylenediamine 0.33 0.29 0.31
33 & and 4,4'-diaminobiphenyl 0.39 0.25 0.35
34 hand phenolphthalein 0.70 0.63 0.67
35 " and 1,4-dihydroxybenzene 0.67 0.58 0.69
36 " and 4,4'-dihydroxydiphenyl 0.55 0.60 0.57
sulphide
37 " and 4,4'-dihydroxydiphenyl 0.57 0.53 0.58
sulphone
38 " and 2,6 dihydroxytoluene 0.86 0.61 0.84
39 "'and 4,4"-sulphonyldianiline 0.42 0.36 0.41
40 !'and 4,4'-diaminobiphenyl 0.37 0.42 0.34
41 J and p-phenylenediamine 0.28 0.36 0.29
42 J'and m-phenylenediamine 0.33 0.24 0.37
43 K and bisphenol-A 0.20 0.28 0.21
44 kK and 4,4'-hydroquinone 0.20 0.25 0.22
45 kand 1,8-dihydroxyanthraquinone ~ 0.17 0.22 0.19
46 k and 4,4-dihydroxy biphenyl 0.27 0.21 0.24
47 Kand 2,4-dihydroxyacetophenone  0.10 0.14 0.11
48 !'and 4,4'-diaminodiphenyl methane 0.52 0.46 0.56
49 !'and 2,4-diaminotoluene 0.41 0.34 0.38
50 and 4,4'-sulfonyldianiline 0.57 0.47 0.54
51 !"and m-phenylenediamine 0.37 0.44 0.40
Test set
52 2 and 4,4'-diaminodiphenylsulfone  0.34 0.32 0.36
53 b and 2,6- dihydroxy toluene 0.41 0.36 0.44
54 € and 4,4'-hydroquinone 0.72 0.64 0.72
Number Name of monomers of polymers ninh ninh ninh
(EXP) (MLR) (ANN)
55 9 and 4,4'-diaminodiphenylmethane 0.29 0.23 0.26
56 € and 4,4'-diaminodiphenylether 0.25 0.20 0.22
57 fand 4,4'-dihydroxydiphenyl 0.48 0.53 0.52
sulfone
58 & and m-phenylenediamine 0.29 0.42 0.27
59 " and 2,4-dihydroxyacetophenone  0.80 0.64 0.76
60 i and 1,3-phenylenediamine 0.33 0.29 0.36
61 J and 4,4'-diaminobiphenyl 0.43 0.47 0.40
62 K and phenol phthalein 0.15 0.1 0.17

(continued on next page)
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Table 1 (continued )

Number Name of monomers of polymers ninh ninh ninh
(EXP) (MLR) (ANN)
63 "and 4,4'-diaminodiphenylether 0.56 0.48 0.58
Validation set
64 ¢ and 2,6-diaminopyridine 0.38 0.44 0.42
65 b and 1,4-dihydroxybenzene 0.45 0.53 0.41
66 € and 1,8-dihydroxyanthraquinone 0.53 0.45 0.50
67 4 and p-phenylenediamine 0.15 0.19 0.13
68 € and 4,4'-sulphonyldianiline 0.35 0.28 0.31
69 fand 1,4-dihydroxybenzene 0.55 0.41 0.54
70 ¢ and 4,4'-diaminodiphenyl 0.42 0.30 0.46
methane
71 h and bisphenol-A 1.00 0.81 1.04
72 i and 4,4'-diaminodiphenylether 0.35 0.29 0.33
73 J'and 4,4'-diaminodiphenylether ~ 0.36 0.32 0.40
74 ¥ and 1,5-dihydroxy naphthalene  0.17 0.23 0.15
75 !'and p-phenylenedi-amine 0.44 0.48 0.41

2 is 4,4'-(hexafluoroisopropylidene )-N,N'-bis-(phthaloyl-L-leucine-p-amidobenzoic

acid)
b is N,N'-(4,4'-hexafluoroisopropylidendiphthaloyl)-bis-L-isoleucine
is 4,4'-(hexafluoroisopropylidene)-N,N'-bis-(phthaloyl-L-leucine) diacid chloride
is 4,4'-(hexafluoroisopropylidene) bis-(phthaloyl-L-leucine)
is 4,4'—(hexafluoroisopropylidene)-N,N'-bis-(phthaloyl-L-methionine) diacid
chloride
is N,N'-(4,4-hexafluoroisopropylidenediphthaloyl)-bis-L-methionine
is N,N'-(4,4'-oxydiphthaloyl)-bis-L-isoleucine diacid chloride
is N,N'-(4,4’-oxydiphthaloyl)-bis-L-leucine
is N,N'-(4,4'-oxydiphthaloyl)-bis-L-methionine diacid chloride
is N,N'-(4,4'-oxydiphthaloyl)-bis-(s)-(+)-valine diacid chloride
is N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride
is N,N'-(4,4'-carbonyldiphthaloyl)-bis-L-leucine diacid chloride

c
d

e

-

—_ " e - T oW

2.3. Variable selection using genetic algorithm

Genetic algorithms are adaptive heuristic search algorithms that
can be applied when the dimension of the data space is too large for
an exhaustive search. They have been proved to be an efficient
method in the feature selection problems [32,33]. GAs have several
advantages in comparison with other optimization algorithms. They
have the ability to move from local optima present on the response
surface. They require no knowledge or gradient information about
the response surface and can be employed for a wide variety of
optimization problem [34]. The major drawbacks to GA are that,
there can be difficulties in finding the exact global optimum, which
requires a large number of response (fitness) function evaluations
and configuring the problem is not straightforward [35]. There are
some basic steps in genetic algorithms as follow: (1) a chromosome
is represented by a binary bit string and an initial population of
chromosomes is created in a random way; (2) a value for the fitness
function of each chromosome is evaluated; (3) according to the
values of fitness function, the chromosomes of the next generation
are reproduced by selection, crossover and mutation operations. In
this paper, GA program was written with MATLAB 7.0 [36] and based
on Leardi’s method [37] with a few minor modifications in our

Table 2
Specification of multiple linear regression model.

Descriptor Notation Coefficient ~ Mean VIF
effect

Molecular weight of repeating MW 0.001 0.781 6.605
unit

Connectivity index chi-3 3X —0.052 -1.036 8.785

2nd component accessibility E2V 1.656 0.572 1.223
directional WHIM index/
weighted by atomic van
der Waals volumes

distance/detour ring index DDRO6 —0.093 -0.110 3.238
of order 6

Balaban index ] —10.497 —-0.150 1172

Constant 0.339

laboratory. The size of population is 30, the probability of cross over
is 0.5, the probability of mutation is 0.01 and the number of evalu-
ation is 200. For each set of data 100 runs were performed. Here, we
try to use varieties of fitness functions which are proportional to the
residual error of the training set, test set and the number of selected
variables according to the following equation:
1

fitness = orc T SEP T ()™ 2
In this equation, SEC and SEP are standard error of calibration
(training) and test set, respectively; m is the number of variables in
the represented model and w is a numerical value that implies the
weights of m in the value of fitness. In fact, the value of w determine
the number of variables consist in selected chromosome. Some
experiments were done using different value for w. Acquired results
showed that for small value of w, the number of variables in the
fittest individual was high and on the other hand if the value of w
was to be high, the number of variables in the best chromosome
was small. Hence, after some experiments the value of w was set to
be 0.3.1t is worth noting that the parameter of w was determined in
a preliminary study, before the overall genetic algorithm optimi-
zation has been carried out.

2.4. Multiple linear regression (MLR)

Multiple linear regression is common method used in QSPR
study. Equation linking the structural features to the mn jun is
developed with the form:

Ninh = Q0 +a1X1 +32X2 + ...+ anXn (3)

where ag is the intercept and ay, a, ..., ay are the regression coeffi-
cients of the descriptors. The descriptors (X1, X2, ..., Xp) included in
the equation are used to describe chemical structure of compounds
and n is the number of the descriptors to find the best regression
model. The main goal of the generation of the MLR model was to
choose a set of suitable descriptors that can be used as inputs for
generation of the ANN model. A stepwise procedure was used for
selection of descriptors. This method combines the forward and
backward procedures. Due to the complexity of inter-correlations,
the variance explained by certain variables will change when new
variables enter the equation. Sometimes a variable that is qualified
to enter loses some of its predictive validity when other variables
enter. If this takes place, the stepwise method will remove the
weakened variable. A final set of selected equations was then tested
for stability and validity through a variety of statistical methods. The
choice of equation suitable for further consideration was made by
using four criteria, namely, multiple correlation coefficients (R),
standard error (S.E.), F-statistic and the number of descriptors in the
model. The orthogonality of the descriptors in the model was
established through variance inflation factor (VIF) [38,39]. The VIF is
defined as 1/(1—R{) where R; is the multiple coefficient of deter-
mination in a regression of the ith predictor on all other predictors. A
VIF value larger than 10 indicates that the information of the
descriptors may be hidden by the correlation of the other descrip-
tors. The best multiple linear regression (MLR) model is one that has
high R and F-values, low standard error, least number of descriptors
and high ability for prediction. The statistical characteristics of the
best MLR model are shown in Table 2. The orthogonality of the
descriptors (VIF) in the MLR model is in agreement with the limit.

2.5. Artificial neural network

Artificial neural networks (ANNs) are basically a data-driven
black-box model capable of solving highly non-linear complex
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problems. They have the ability to capture the relationship between
input and output variables from given patterns (historical data or
measured data on input and output variables of the system of the
concern) and this enables them to solve large-scale complex
problems. The network learns basically by finding the optimal
network-connection-weights that would generate an output vector
as close as possible to the target values of the output vector, with
the selected accuracy. A detailed description of the theory behind
a neural network has been adequately described elsewhere
[37,40,41]. The program for the feedforward neural network that
was trained by backpropagation algorithm was written with
MATLAB 7 in our laboratory. This network has five nodes in the
input layer and one node in the output layer. Descriptors that
appeared in the selected MLR model were used as inputs for the
generated ANN and its output was the inherent viscosity for the
molecules of interest. The number of nodes in the hidden layer
would be optimized. The initial weights were randomly selected
between —0.3 and +0.3. The initial bias values were set to be one.
These values were optimized during the network training. The
value of each input was divided into its mean value to bring them
into the dynamic range of the sigmoid transfer function of the ANN.
Before training, the network was optimized for the number of
nodes in the hidden layer, learning rates and momentum, then the
network was trained using the training set to optimize the values of
weights and biases. Finally in order to evaluate the prediction
power of the ANN, trained network was employed to calculate the
inherent viscosity for the external validation set.

2.6. Estimation of the predictive ability of a QSPR model

For the optimized QSPR model several parameters were selected
to test prediction ability of the model. A real QSPR model may have
a high predictive ability, if it is close to ideal one. This may imply
that the correlation coefficient R between the experimental (actual)
y and predicted y properties must be close to 1 and regression of y
against y or y against y through the origin, i.e. y© = ky and
370 = Ky, respectively, should be characterized by at least either k
or k' close to 1 [42]. Slopes k and k' are calculated as follows:

2oV

k = &1 4
S @

’ Zyij’i

K = &=L 5
>y (5)

The criteria formulated above may not be sufficient for a QSPR
model to be truly predictive. Regression lines through the origin
defined by y™© = ky and 7 = K'y(with the intercept set to
one) should be close to optimum regression lines y" = ay + b and
y = a'y+Db’ (b and b’ are intercepts). Correlation coefficients for

these lines R3 and R are calculated as follows:

2
R3 = 1,M (6)
> (i-3)
2
Z()/i*f’ir())
2
AT T 7

where ¥ and y are the average values of the observed and predicted
properties, respectively and the summations are over all n
compounds in the validation set.

A difference between R, and R values (R2,) needs to be studied
to explore the prediction potential of a model [43]. This term was
defined in the following manner:

Rﬁ,,:Rz(l—‘\/W) (8)

Finally, the following criteria for evaluation of the predictive
ability of QSPR models should be considered:

1. High value of cross-validated R? (g* > 0.5).

2. Correlation coefficient R between the predicted and actual
properties from an external test set close to 1. R3or R¢should be
close to R

3. Atleast one slope of regression lines (k or k') through the origin
should be close to 1.

4. R%should be greater than 0.5.

3. Result and discussion

Table 1 shows the data set and corresponding observed MLR and
ANN predicted values of inherent viscosity of all polymers studied
in this work. It can be seen from Table 2 that five descriptors
appeared in the MLR model. These descriptors are: molecular
weight (MW), Randic index order 3 (3x), 2nd component accessi-
bility directional WHIM index/weighted by atomic van der Waals
volumes (E2V), distance/detour ring index of order 6 (DDRO6) and
Balaban index (J). The numerical values of these descriptors are
shown in Table 3. Table 4 represents the correlation matrix for these
descriptors. By interpreting the descriptors in the models, it is
possible to gain some insight into factors that are likely related to
inherent viscosity of polymers.

The first descriptor described here is MW, which is a constitu-
tional descriptor. This simple descriptor reflects only the molecular
composition of the compound without using the geometry or
electronic structure of the molecule. The second descriptor is “2nd
component accessibility directional WHIM index/weighted by
atomic van der Waals volumes (E2V)”. WHIM descriptors are the
molecular descriptors based on statistical indices calculated on the
projections of the atoms along principal axes [44]. They are built in
such a way to capture relevant molecular 3-dimensional informa-
tion regarding to the molecular size, shape, symmetry, and atom
distribution with respect to invariant reference frames. These
indices are calculated from (x, y, z)-coordinates of a molecule
within different weighting schemes in a straightforward manner
and represent a very general approach to describe molecules in
a unitary conceptual framework. A detailed description of their
chemical meaning and of the WHIM theory is reported elsewhere
[45]. As it shown in Table 2 these two descriptors have positive
signs for their effects, which reveals that by increasing the values of
these descriptors, the values of 1 jn, increase. The next descriptor is
Randic index order 3 (3y), a topological descriptor. This descriptor is
defined by the following formula:

3 = Y (DiDy...Dy) (9)
path

where D; and D; are the edge degrees (atom connectivities) of the
molecular graph. Topological descriptors (also called topological
indices) describe the atomic connectivity in the molecule [46—48].
The forth descriptor is Balaban index (J). This descriptor is defined
by the following formula:

J= (fj{l) zq:(sisj)f% (10)

ij
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Table 3

The values of the descriptors that were used in this work.
Number® MwW 3X E2V DDR0O6 ]
1 981.01 24.529 0.298 1.048 0.016
2 1190.99 2.860 0.329 2.346 0.038
3 996.96 2.199 0.281 2.231 0.000
4 1057.11 23.012 0.507 0.912 0.033
5 1073.11 23.162 0.523 0.902 0.034
6 1071.14 27.162 0.529 0.902 0.034
7 862.9 21.400 0.382 1.198 0.011
8 852.88 21.201 0.380 1.192 0.013
9 820.81 21.098 0.286 1.264 0.013
10 884.88 22.400 0.374 1.198 0.013
1 952.93 17.877 0.434 0.985 0.010
12 862.9 21.545 0.412 1.191 0.015
13 874.81 22.726 0.352 1137 0.011
14 794.77 19.743 0.340 1.259 0.021
15 820.81 20.197 0.350 1.202 0.018
16 786.75 18.779 0.337 1.409 0.012
17 750.83 18.886 0.349 1.616 0.025
18 832.88 22.347 0.174 1.185 0.013
19 872.85 24.612 0.259 1132 0.018
20 882.92 19.545 0.168 1.191 0.013
21 742.75 20.714 0.257 1425 0.018
22 832.88 19.201 0.187 1.192 0.013
23 742.75 20.568 0.333 1.436 0.017
24 818.85 23.052 0.306 1.210 0.016
25 742.75 20.478 0.326 1.440 0.015
26 756.78 17.140 0.451 1134 0.010
27 780.79 20.009 0.306 1.414 0.012
28 888.96 22.642 0.402 1.178 0.012
29 920.96 21.840 0.351 1.185 0.012
30 748.89 21514 0.297 1.040 0.012
31 700.82 20.315 0.319 1.026 0.013
32 608.72 17.682 0.303 1.209 0.014
33 684.82 20.165 0.294 1.041 0.013
34 818.9 19.991 0.416 0.881 0.011
35 610.68 16.828 0.435 1.199 0.012
36 718.85 19.461 0.455 1.019 0.012
37 750.85 20.659 0.432 1.033 0.012
38 624.71 17.537 0.455 1.211 0.010
39 784.97 18.954 0.264 1.027 0.013
40 720.83 20.451 0.385 1.023 0.013
41 580.66 16.620 0.286 1195 0.014
42 580.66 16.529 0.280 1.200 0.013
43 690.71 20.685 0.302 0.995 0.014
44 728.81 21.750 0.314 0.996 0.015
45 820.81 23.584 0.267 0.873 0.014
46 820.81 22.584 0.264 0.871 0.014
47 740.77 22.715 0.278 0.925 0.014
48 710.86 20.145 0.390 1.042 0.010
49 634.76 18.083 0.383 1.233 0.016
50 760.9 21.344 0.423 1.054 0.013
51 620.73 17.422 0.367 1.234 0.016
52 112118 30.360 0.495 0.901 0.030
53 758.74 21.140 0.351 1.434 0.010
54 744.71 17.714 0.433 1.425 0.012
55 818.85 21.197 0.286 1.202 0.020
56 834.85 23.201 0.294 1.192 0.015
57 782.77 19.918 0.411 1.419 0.012
58 608.72 17.592 0.371 1.214 0.013
59 612.66 16.737 0.382 1.203 0.012
60 1289.58 31.490 0.266 0.710 0.009
61 656.76 19.103 0.403 1.025 0.012
62 898.93 27.849 0.323 0.786 0.015
63 712.83 20.145 0.431 1.042 0.015
64 90.16 2.199 0.264 2.231 0.012
65 744.71 18.568 0.399 1.436 0.013
66 874.81 19.612 0.289 1135 0.013
67 846.86 23.017 0.272 1.188 0.015
68 743.74 19.623 0.311 1429 0.017
69 989.01 21172 0.294 0.980 0.010
70 698.85 20.315 0.351 1.026 0.012
71 728.87 16.659 0.479 1.033 0.010

Table 3 (continued)

Number® MW 3X E2V DDRO6 J

72 1289.58 31.490 0.266 0.710 0.009
73 672.76 19.253 0.385 1.010 0.013
74 808.9 24.517 0.349 0.891 0.015
75 620.73 17.512 0.430 1.230 0.018

The definitions of the descriptors are given in Table 2.
2 The numbers refer to the numbers of the molecules given in Table 1.

where q is the number of edges in the molecular graph, y is the
cyclometric number and S; and S; are the distance sums (or distance
degrees), obtained by summation the row i and column i (or row j
and column j, respectively) of the distance matrix between atoms in
the molecule. The last descriptor that is presented here is distance/
detour ring index of order 6 (DDRO06). This descriptor is also
a topological descriptor. Topological descriptors are derived
entirely from 2D structural formulas and. Therefore, missing
parameters, conformational flexibility, or molecular alignment do
not have to be taken into account. Topological descriptors can be
easily calculated from molecular graphs in which the atoms are
represented by vertices and the bonds by edges. The connections
between the atoms can be described by various types of topological
matrices, which can be mathematically manipulated so as to derive
a single number, usually known as graph invariant, graph-theo-
retical index or topological Index.

These three descriptors have negative signs for their effects,
which reveal that by increasing the values of these descriptors, the
values of 1 ijnn decrease.

From the above discussion, it can be seen that all descriptors
involved in the QSPR model have physically meaning, and these
descriptors can account for structural features that affect the
inherent viscosity of the interested polymers.

The next step was the construction of an artificial neural
network. During the training of the ANN, the parameters of
network including the number of nodes in the hidden layer,
weights and biases learning rates and momentum values were
optimized. Table 5 shows the architecture and specification of the
optimized network. After optimization of the network parameters,
the network was trained by using training set for adjustment of the
weights and biases values by backpropagation algorithm. It is
known that neural network can become over-trained. An over-
trained network has usually learned perfectly the stimulus pattern
it has seen but can not give accurate prediction for unseen stimuli.
There are several methods for overcoming this problem. One
method is to use a test set to evaluate the prediction power of the
network during its training. In this method after each 1000 training
iterations, the network was used to calculate n i of molecules
included in the test set. To maintain the predictive power of the
network at a desirable level, training was stopped when the value
of errors for the test set started to increase. Results obtained
showed overtraining began after 26000 iterations.

The predictive power of the ANN models developed on the
selected training sets are estimated on the predictions of validation
set chemicals, by calculating the g that is defined as follow:

Table 4
Correlation matrix between selected descriptors.
MW 3x E2V DDRO6 ]
MW 1 0.894 0.239 —0.729 0.184
3X 1 0.110 —0.803 0.097
E2V 1 -0.219 0.308
DDRO6 1 0.072
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Table 5

Architecture and specifications of optimized ANN model.
Number of nodes in the input layer 5
Number of nodes in the hidden layer 5
Number of nodes in the output layer 1
Weights learning rate 0.2
Biases learning rate 0.1
Momentum 0.5
Transfer function Sigmoid

Table 6

Statistical parameters obtained using the ANN and MLR models.?
Model  SE. SE; SE, Rc R¢ Ry e F Fy
ANN 0.023 0.030 0.031 0.994 0.989 0.991 3972 429 522
MLR 0.079 0.077 0.088 0.924 0.923 0922 286 58 56

@ crefers to the calibration (training) set; t refers to test set; v refers to validation

set; Ris the correlation coefficient; SE is standard error and F is the statistical F value.

\2
>4 _Z(yi_yi)
Y-y
where y; and y;, respectively are the measured and predicted values
of the dependent variable (inherent viscosity), y is the averaged
value of dependent variable of the training set and the summations
cover all the compounds. The calculated value of g* was 0.978.

Table 1 represents the experimental, MLR and ANN calculated
values of inherent viscosity for the training, test and validation sets.
The statistical parameters obtained by ANN and MLR models for
these sets are shown in Table 6. The standard errors of training, test
and validation sets for the MLR model are 0.079, 0.077, and 0.088,
respectively which would be compared with the values of 0.023,
0.030, and 0.031, respectively, for the ANN model. Comparison
between these values and other statistical parameters in Table 6
reveals the superiority of the ANN model over MLR one. The key
strength of neural networks, unlike MLR analysis, is their ability to
flexible mapping of the selected features by manipulating their
functional dependence implicitly.

The statistical values of validation set for the ANN model was
characterized by ¢* = 0.978, R*> = 0.982 (R = 0.991), R§ = 0.978,
RZ = 0.921 and k = 0.993. These values and other statistical

(11)
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Fig. 1. Plot of ANN calculated inherent viscosity against experimental values.
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Fig. 2. Plot of residual versus experimental values of inherent viscosity.

parameters which are shown in Table 6 reveal the high predictive
ability of the model. Fig. 1 shows the plot of the ANN predicted
versus experimental values for inherent viscosity of all of the
molecules in data set. The residuals of the ANN calculated values of
the inherent viscosity are plotted against the experimental values
in Fig. 2. The propagation of the residuals in both sides of zero line
indicates that no systematic error exists in the constructed QSPR
model.

4. Conclusions

In the present work GA as a feature selection tool and MLR and
ANN as feature mapping techniques were used for prediction of the
inherent viscosity of 75 optically active polymers. The optimized
5-5-1 ANN model showed a remarkable improvement over the
linear model. The GA-based MLR approach is especially useful for
modeling a large variable data set. The physical meaning of the
selected subset of descriptors, which are the most predictive and
informative, from the GA method, is determined. The inherent
viscosities of investigated polymers were interpreted rationally
with these five descriptors. Result obtained indicate that while the
GA and MLR method could be more powerful in precise selecting of
important parameters and assume the significance of each of
descriptors, introduction of neural network gives a significant
improvement of prediction quality.
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